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Dynamic behaviour of electrochemical reactors for a step
change in the inlet concentration under galvanostatic or
potentiostatic control
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The dynamic modelling of a cascade of continuous stirred tank electrochemical reactors under
galvanostatic and potentiostatic control is performed. The response of the system in outlet con-
centration and current (potentiostatic case) for a step change in the inlet concentration in terms of the
number of reactors is analysed. The idealised models, stirred tank and plug flow, are also included as
limiting cases. The time required to reach approximate steady-state values in terms of the number of

reactors and electrochemical parameters is discussed.

List of symbols

a. specific surface area (m™')

A magnitude of step change in the inlet
concentration (mol m—3)

C  concentration (mol m~%)

C; concentration of the jth reactor (mol m~?)

C; inlet concentration before

perturbation (mol m~)

concentration of the jth reactor before

perturbation (mol m~3)

Damkohler number

Faraday constant (A s mol™!)

transfer function

Heaviside shifting function

current density (A m~2)

total current (A)

current of the jth reactor (A)

kinetic constant (m s~!)

rate constant (m s~ ')

constant defined by Equation 16 or 18

electrode length (m)

mw@»bN“mQﬁg Ko

1. Introduction

A convenient method of dynamic modelling of elec-
trochemical reactors is to consider a cascade of con-
tinuous stirred tank reactors, from which the
behaviour of the idealised models, stirred tank and
plug flow, can be obtained as limiting cases.

Fahidy [1] has analysed the dynamics of the iso-
thermal continuous stirred tank and plug flow
models under galvanostatic control when perturba-
tions in the feed concentration and current are
produced. In [2] the transient response of a non-
isothermal continuous stirred tank electrochemical
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number of tanks in the cascade
s Laplace transform operator

time (s)
t;  time to reach 99% of the steady-state
value (s)
time constant defined by
Equation 17 or 19 (s)
superficial liquid flow velocity (m s™')
volume of each reactor (m?)
electrode width (m)
axial coordinate (m)
perturbation variable for inlet
concentration (mol m~?)
perturbation variable for outlet
concentration (mol m~3)

MEESSON

~

Greek symbols

f  constant given by Equation 20

& porosity

v.  charge number of the electrode reaction
T cascade residence time (s)

reactor is presented. In [3] the case of nonisothermal
plug flow reactors is treated. It was assumed that a
single electrolytic process is carried out galvano-
statically and that the axial distribution of current
may be represented, at least in a first approximation,
by means of an appropriate average value. Addi-
tionally, Scott [4, 5] examined the behaviour of a
cascade of two tanks and the dynamic response for
multiple reactions.

The aim of this work is to develop the dynamics of
a cascade of n tanks under galvanostatic and po-
tentiostatic control and to analyse the necessary time
to achieve conditions close to the steady state.
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2. Dynamics of the tank series model
2.1. Concentration as a function of time

The transfer function for a cascade of continuous
stirred tank electrochemical reactors is given by [4]

Yuls) _ s (s
Xl(s) _j];[lGJ( ) (1)

where G; is the transfer function of each reactor,
being

K
_ (2)
(T s+ 1)
The time constant 7}, and the constant K; depend on
the electrical control. Thus, for galvanostatic control:

Kj=1 3)
Ty =1 4)

Gj(s) =

Under potentiostatic operation the kinetics of a first-
order reaction at high electrode potentials is given by

(6]

i(6) = ve F k C(f) (5)
being
_ Kk
ST ©

High values of the Damkohler number indicate an
approach to mass transport controlled rates. 7; and
K; for potentiostatic control are given by

=g O

Tj

Tj:m (8)

A cascade of electrochemical reactors is an attractive
model to represent the behaviour of real reactors.
Thus, an interesting alternative is to consider a cas-
cade where all the tanks have the same residence time.
Then

K =

T = )

n

where 7 is the cascade residence time. Therefore, the
gain and the time constant are the same for all the
reactors in the cascade. Introducing Equation 2 into
Equation 1 yields

Yu(s) K"

Xi(s) (Ts+1) (10)

Assuming a step perturbation in the inlet concentra-
tion of magnitude 4, Equation 10 is
_ AK"

- s(Ts+1)"

Y (s) (11)

Equation 11 can be solved by Laplace transform in-
version. Thus, forn = 1

HM:AKmeNf%} (12)

forn = 2

Yht) =4 Kz{l - (1 —l—%) exp(—%ﬂ

and forn = 3

)30):n4K3{1— P—+%—+%(§)1 exp(—%)}(l@

Equations 12 and 13 are also given by Scott [4, 5].
From Equations 12—14 the following general ex-
pression can be inferred

o= mfi- (St ()] en(-5)

(13)

(15)
where for the galvanostatic case
K=1 (16)
and
T=- 17
: (17)
For the potentiostatic case
n
K= 18
n+p (18)
and
r=—" (19)
n+p
being
kaet
p=riet (20)

Thus, f lumps the electrochemical kinetics, &, elec-
trode properties a. and ¢, with the system residence
time.

Evaluating Equation 15 at t — oo yields
Cy(oo)—C, =4 K" (21)

Likewise, for a cascade of tanks the outlet concen-
tration is related to the inlet concentration by

C=C; K" (22)
Combining Equations 21 and 22 yields
Cy(o0)—Cr 4
_— = 23
Cx (O (23)
For the galvanostatic case Equation 21 gives
Cy(o0)=C, +4 (24)

Thus when the current is constant the electrochemical
reaction rate does not depend on the concentration
and a change in the inlet concentration produces the
same change in the outlet concentration. A similar
situation corresponds to a mixer.

For the potentiostatic case introducing Equation
18 into 21 yields

* n !
cxug—c;_A<n+ﬁ)

For n — oo, according to Zucker [7] Equation 25
approaches

(25)
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Cu(o0) = C, =4 exp(—p) (26)

2.2. Current as a function of time for the potentiostatic
case

The current drained by the jth reactor in the cascade
is given by

Li(t) = ve F k a. V C;(1) (27)

Introducing Equation 12 into Equation 27, and tak-
ing into account Equations 18-20, the current of the
first reactor in the cascade is

]l(f)

—1(0)= ve F k ae —tﬁ
<{i—exp(-Lm+p)}  ©@8)

Analogously for the second and third reactors:
2
)
X {1 — [1 —&-;(n—l—ﬁ)}
X exp(—%(n + ﬁ))}
n \3
n+ ﬁ)
2
X {1 — {1 +£(n+ﬂ)+%(£(n+ﬁ)) ]
X exp(—%(n + [3))}

For the jth reactor

I(t) = I,(0) = v F k a VA(n i ﬁ>j

x{l i{w( 11)!(2(’1%))!'—1}

i=1

[z(l‘) —]2(0) =v. F ka. VA(

(29)

13([) —[3(0) =ve F k a VA(

(30)

t
xexp(r(n+ﬁ)>} (31)
The total current in the cascade is given by
1) =) _L(0) (32)
j=1

Introducing Equations 28-31 into Equation 32 gives
1(t) = 1(0)

= LFZCVA <Ci‘{l — exp(—%(n + ﬂ))}

+c;{1 - [1 +£(n+ﬁ)} eXp(—é(nJrﬁ))}

+C§{1 - 1+£(n+ﬁ)+%(£(n+ﬁ))2]

Evaluating Equation 32 at ¢t = 0 results in

10)=ve Fka. VY C;
J=1

(34)
Introducing Equation 34 into Equation 33 and rear-
ranging yields

1(t) — 1(0)
1(0)

COZIIC*{ZC* {ZC (n+ﬁ))
X;C]’.‘—i— ( n—i—ﬁ)ZC* 3,( (”+ﬁ))3

szn;C}‘+ +ﬁ(§(ﬂ+ﬁ))n C,*,]}

t
x exp(—;(n + ﬁ)) (35)
Likewise
So-a| i (i) ()
n + n+p n+p
n—1
-+ 36
" ( ) o
Equation 36 can be rearranged to
* — 1
Zc* = (37)
Then
¢ K'-K
Z/ =2 j*: . (38)
ijl ¢, K'—1
Analogously
'L C* n _ g2
22—3 i :Kn K (39)
2 G K-l
'L C* K" — K3
2{1—4 i _ . (40)
> C K1
* n _ gn—l
C; _ K'"—K (1)

Z] 1 C; K" —1
Introducing Equations 38-41 into Equation 35 yields
I (l‘) - I (O)

_C_g{ [ Cotp) ot
n 2
w3 (0ep)
1t 3 — K3 1
+3'(f ) -1 T
Crp) |}

X exp(—%(n + ﬁ))

or in general
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_ n J—1
I(t)1(0§(0) :Cig{l - LZI—(J—I 3 E (n+ ﬁ)}
x K;(n_fjll} } exp(fg(n + [3)) (43)

For high ¢ values Equation 43 approaches

[(00) —1(0) 4
10) G e

3. Dynamics of the plug flow model

The dynamics of a plug flow reactor corresponds to a
distributed parameter system. The mass balance gives

OC(x, 1) _UaC(x, 1) i(x,1) ae

or Ox ve I

Assuming that the electrolytic process is carried out
galvanostatically and the current density distribution
is not affected by a step perturbation in the inlet
concentration, the solution of Equation 45 is

&

(45)

Y(x,1) = AH (z - xf) (46a)

with
H(:—xf)zo r<X (46b)
H(z—%) =1 tz% (46c)

Equation 46 was deduced and discussed by Fahidy [1]
and Scott [4].
Likewise, introducing the following kinetic ex-

pression into Equation 45
i(x,t) =ve F k C(x,1) (47)

and rearranging in terms of perturbation variables
results in

gaY(x, ) OoY(xt)

7R v kae Y(x,t) (48a)
with the following initial and boundary conditions:
Y(x,0) =0 (48b)
and
Y(0,t) =4 fort>0 (48¢)

In order to simplify the solution of Equation 48a, it is
necessary to assume that £ is independent of position
along the reactor. This assumption is valid under
potentiostatic control when the potential distribution
along the electrode length does not alter the reaction
rate, which is fulfilled by reactions under mass-
transport control.

Using Laplace transforms the solution of Equa-
tion 48a is

Y(x,1) = AH (t —%) exp(-k a %)

Evaluating Equation 49 at x=L for >t gives
Equation 26, which corroborates the well known
behaviour that a cascade of reactors approaches the
plug flow model when n — oo [8]. Fahidy [3] has

(49)

deduced an equation of the same form as that of
Equation 49 for the galvanostatic case assuming that
the ratio between the current density and the elec-
trolyte density along the reactor is a function of the
concentration, which was approximated by a Taylor
expansion truncated to the two first terms.

The total current, for the reactor, is given by

L
I(t) = W/ i(x,¢) dx (50)
0
Combining Equations 47, 49 and 50 gives
L xe
1(t) — 1(0) = Wy, F kA/O H(t—;)
X
X exp(—k de 5) dx (51)

Equation 51 can be rearranged to

t/e X
1() — I(0) = Wve F k A/ exp(—k a —) dx
0 v

(52)
Equation 52 is valid for
Le
0<t< f (53)
Solving Equation 52 and rearranging yields
-r0)_al-ew(-%)
1(0) C; 1 —exp(=p)
And for t = t Equation 54 is reduced to
I(t)—1(0) 4
_— = 55
1(0) Cs (55)

4. Comparison of the dynamic behaviours and
discussion

Figure 1 shows the response of electrochemical re-
actors according to the tank series model under gal-

Plug flow

1.0 |

1 reactor, stirred tank 4
—————— 2 reactors
~~~~~~~~~ 3 reactors

05

Y(t)/ A

--------- 4 reactors
e 5 reactors
------------ 6 reactors

7 reactors
—— 10 reactors

-—-—--20 reactors .
a ) i i 2

0 1 2 3
t/t

0.0

Fig. 1. Transient response in outlet concentration. Galvanostatic
control.
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0.50
< 1 reactor, stirred tank ]
~ 2 reactors ]
8 0.25 3 reactors E
> ——-—- 4 reactors

10 reactors
— 20 reactors

™= Plug flow

0.00

t/t

Fig. 2. Transient response in outlet concentration. Potentiostatic
control (f = 1).

vanostatic control, Equations 15-17, for a step
change of magnitude 4 in the inlet concentration.
Thus, the difference between the outlet concentration
at time ¢ and the outlet concentration before the
perturbation related to the magnitude of the step
change in the inlet concentration as a function of the
normalized time, ¢/7, is plotted. The behaviour of the
plug-flow model under the same conditions, Equation
46a evaluated at x = L, is also given. As expected,
when the number of reactors increases the perfor-
mance of the tank series model approaches the plug
flow model. Likewise, for high ¢ values the electro-
chemical system approaches unity independent of the
number of reactors in the stack.

Figures 2 and 3 show typical responses of the tank
series model, Equations 15, 18-20, and the plug-flow
model, Equation 49 evaluated at x = L, under po-

T T
2.0
1.5 F 1
— L )
1
—~ 1
8 / 1 reactors, stirred tank |
i 1.0 F / ------------ 2 reactors 1
—_~ 4 3 reactors
N /
— S 20 reactors
L R Plug flow E
05 F 7
s p=1 |
A/IC =2
0
0.0 = L L
0 1 2 3

t/t

Fig. 4. Transient response in current. Potentiostatic control

B=0.

10

l— 10 reactors
N 12 reactors

Y(t)/ A x 10

| T~ Plug flow A

t/t

Fig. 3. Transient response in outlet concentration. Potentiostatic
control (f = 10).

tentiostatic control. In this case the response depends
on f3, which was assumed unity in Fig. 2 and ten in
Fig. 3. Again at high ¢ values the tank series model
approaches a constant, but the constant value de-
creases when the number of reactors in the stack in-
creases and approaches a limiting value in accordance
with the plug-flow model. This behaviour can be ex-
plained taking into account that under potentiostatic
control the reaction rate depends on the concentra-
tion.

Figure 4 shows the response in current of the
studied systems, under potentiostatic control, for a
step change in the inlet concentration. At t — oo the
variation in the current related to the initial current
approaches a constant value. The constant value is
the same for the tank series model, Equation 44, and

T R
30 F ]
= 2 ]
~ 3 J
-2 E
10 [ ]

0- L 1 1 o a2 2 2 L1 2 L 1
0 5 10 15 20 25 30

n

Fig. 5. Time to reach the 99% of the steady-state outlet concen-
tration normalized by the time constant as a function of the
number of reactors in the cascade.
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10 25 °

Fig. 6. Time to reach the 99% of the steady-state outlet concen-
tration normalized by the cascade residence time as a function of 8
and the number of reactors in the cascade.

for the plug-flow model, Equation 55. This behaviour
is a consequence of Equation 23, which states that the
response in the outlet concentration, related to the
outlet concentration before the perturbation, C;, is
constant independent of the reactors number in the
cascade.

Figures 1-3 show that a cascade of electrochemical
reactors achieves the steady state at t — co. From a
practical point of view it is interesting to know the
necessary time to achieve conditions close to the
steady state. Thus, a time ¢, termed the stabilization
time, where the response of the system is the 99% of
the steady-state value may be defined. Figure 5 shows
the time #; normalized by T as a function of the

number of reactors. ¢,/ T increases with n and at high
n values the relation is approximately linear, which
allows determination of ¢,. However, T is a function
of n, f and 7 (according to Equation 19). The results
of Fig. 5 are re-plotted in three-dimensional form in
Fig. 6, where the effect of changes in # and ff on /7 is
elucidated. The galvanostatic case is taken into ac-
count in Fig. 6 for § = 0. For a given value of n the
stabilization time normalized with respect to T always
decreases as f§ increases. However, for a given f§ value
ts/t decreases with n for low f values and increases
with z for high f values. Likewise, for high values of n
or f the stabilization time approaches the reactor
residence time.
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