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The dynamic modelling of a cascade of continuous stirred tank electrochemical reactors under
galvanostatic and potentiostatic control is performed. The response of the system in outlet con-
centration and current (potentiostatic case) for a step change in the inlet concentration in terms of the
number of reactors is analysed. The idealised models, stirred tank and plug ¯ow, are also included as
limiting cases. The time required to reach approximate steady-state values in terms of the number of
reactors and electrochemical parameters is discussed.

1. Introduction

A convenient method of dynamic modelling of elec-
trochemical reactors is to consider a cascade of con-
tinuous stirred tank reactors, from which the
behaviour of the idealised models, stirred tank and
plug ¯ow, can be obtained as limiting cases.

Fahidy [1] has analysed the dynamics of the iso-
thermal continuous stirred tank and plug ¯ow
models under galvanostatic control when perturba-
tions in the feed concentration and current are
produced. In [2] the transient response of a non-
isothermal continuous stirred tank electrochemical

reactor is presented. In [3] the case of nonisothermal
plug ¯ow reactors is treated. It was assumed that a
single electrolytic process is carried out galvano-
statically and that the axial distribution of current
may be represented, at least in a ®rst approximation,
by means of an appropriate average value. Addi-
tionally, Scott [4, 5] examined the behaviour of a
cascade of two tanks and the dynamic response for
multiple reactions.

The aim of this work is to develop the dynamics of
a cascade of n tanks under galvanostatic and po-
tentiostatic control and to analyse the necessary time
to achieve conditions close to the steady state.

List of symbols

ae speci®c surface area (mÿ1)
A magnitude of step change in the inlet

concentration (mol mÿ3)
C concentration (mol mÿ3)
Cj concentration of the jth reactor (mol mÿ3)
C�0 inlet concentration before

perturbation (mol mÿ3)
C�j concentration of the jth reactor before

perturbation (mol mÿ3)
Da Damk�ohler number
F Faraday constant (A s molÿ1)
G transfer function
H Heaviside shifting function
i current density (A mÿ2)
I total current (A)
Ij current of the jth reactor (A)
k kinetic constant (m sÿ1)
kf rate constant (m sÿ1)
K constant de®ned by Equation 16 or 18
L electrode length (m)

n number of tanks in the cascade
s Laplace transform operator
t time (s)
ts time to reach 99% of the steady-state

value (s)
T time constant de®ned by

Equation 17 or 19 (s)
v super®cial liquid ¯ow velocity (m sÿ1)
V volume of each reactor (m3)
W electrode width (m)
x axial coordinate (m)
X perturbation variable for inlet

concentration (mol mÿ3)
Y perturbation variable for outlet

concentration (mol mÿ3)

Greek symbols
b constant given by Equation 20
e porosity
me charge number of the electrode reaction
s cascade residence time (s)
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2. Dynamics of the tank series model

2.1. Concentration as a function of time

The transfer function for a cascade of continuous
stirred tank electrochemical reactors is given by [4]

Yn�s�
X1�s� �

Yn

j�1
Gj�s� �1�

where Gj is the transfer function of each reactor,
being

Gj�s� � Kj

�Tj s� 1� �2�

The time constant Tj, and the constant Kj depend on
the electrical control. Thus, for galvanostatic control:

Kj � 1 �3�
Tj � sj �4�

Under potentiostatic operation the kinetics of a ®rst-
order reaction at high electrode potentials is given by
[6]

i�t� � me F k C�t� �5�
being

k � kf

�1�Da� �6�

High values of the Damk�ohler number indicate an
approach to mass transport controlled rates. Tj and
Kj for potentiostatic control are given by

Kj � 1

1� k ae sj

e

� � �7�

Tj � sj

1� k ae sj

e

� � �8�

A cascade of electrochemical reactors is an attractive
model to represent the behaviour of real reactors.
Thus, an interesting alternative is to consider a cas-
cade where all the tanks have the same residence time.
Then

sj � s
n

�9�

where s is the cascade residence time. Therefore, the
gain and the time constant are the same for all the
reactors in the cascade. Introducing Equation 2 into
Equation 1 yields

Yn�s�
X1�s� �

Kn

�Ts� 1�n �10�

Assuming a step perturbation in the inlet concentra-
tion of magnitude A, Equation 10 is

Yn�s� � A Kn

s�Ts� 1�n �11�

Equation 11 can be solved by Laplace transform in-
version. Thus, for n = 1

Y1�t� � A K 1ÿ exp ÿ t
T

� �h i
�12�

for n = 2

Y2�t� � A K2 1ÿ 1� t
T

� �
exp ÿ t

T

� �h i
�13�

and for n = 3

Y3�t� � A K3

�
1ÿ 1� t

T
� 1

2

t
T

� �2� �
exp ÿ t

T

� ��
�14�

Equations 12 and 13 are also given by Scott [4, 5].
From Equations 12ÿ14 the following general ex-
pression can be inferred

Yn�t� � A Kn
�
1ÿ

Xn

j�1

1

�jÿ 1�!
t
T

� �jÿ1
" #

exp ÿ t
T

� ��
�15�

where for the galvanostatic case

K � 1 �16�
and

T � s
n

�17�

For the potentiostatic case

K � n
n� b

�18�

and

T � s
n� b

�19�

being

b � k ae s
e

�20�

Thus, b lumps the electrochemical kinetics, k, elec-
trode properties ae and e, with the system residence
time.

Evaluating Equation 15 at t!1 yields

Cn�1� ÿ C�n � A Kn �21�
Likewise, for a cascade of tanks the outlet concen-
tration is related to the inlet concentration by

C�n � C�0 Kn �22�
Combining Equations 21 and 22 yields

Cn�1� ÿ C�n
C�n

� A
C�0

�23�

For the galvanostatic case Equation 21 gives

Cn�1� � C�n � A �24�
Thus when the current is constant the electrochemical
reaction rate does not depend on the concentration
and a change in the inlet concentration produces the
same change in the outlet concentration. A similar
situation corresponds to a mixer.

For the potentiostatic case introducing Equation
18 into 21 yields

Cn�1� ÿ C�n � A
n

n� b

� �n

�25�

For n!1, according to Zucker [7] Equation 25
approaches
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Cn�1� ÿ C�n � A exp�ÿb� �26�

2.2. Current as a function of time for the potentiostatic
case

The current drained by the jth reactor in the cascade
is given by

Ij�t� � me F k ae V Cj�t� �27�
Introducing Equation 12 into Equation 27, and tak-
ing into account Equations 18±20, the current of the
®rst reactor in the cascade is

I1�t� ÿ I1�0� � me F k ae V A
n

n� b

� 1ÿ exp ÿ t
s
�n� b�

� �n o
�28�

Analogously for the second and third reactors:

I2�t� ÿ I2�0� � me F k ae V A
n

n� b

� �2

� 1ÿ 1� t
s
�n� b�

h in
� exp ÿ t

s
�n� b�

� �o
�29�

I3�t� ÿ I3�0� � me F k ae V A
n

n� b

� �3

�
�
1ÿ

�
1� t

s
�n� b� � 1

2

t
s
�n� b�

� �2�
� exp ÿ t

s
�n� b�

� ��
�30�

For the jth reactor

Ij�t� ÿ Ij�0� � me F k ae V A
n

n� b

� �j

�
�
1ÿ

Xj

i�1

�
1� 1

�iÿ 1�!
t
s
�n� b�

� �iÿ1�
� exp ÿ t

s
�n� b�

� ��
�31�

The total current in the cascade is given by

I�t� �
Xn

j�1
Ij�t� �32�

Introducing Equations 28±31 into Equation 32 gives

I�t� ÿ I�0�

� meFkaeVA
C�0

�
C�1 1ÿ exp ÿ t

s
�n� b�

� �n o
� C�2 1ÿ

�
1� t

s
�n� b�

�
exp ÿ t

s
�n� b�

� �� �
� C�3 1ÿ

�
1� t

s
�n� b� � 1

2

t
s
�n� b�

� �2��
� exp ÿ t

s
�n� b�

� �o
� � � � � C�n

�
1ÿ

Xn

j�1

�
1� 1

�jÿ 1�!
t
s
�n� b�

� �jÿ1�

� exp ÿ t
s
�n� b�

� ���
�33�

Evaluating Equation 32 at t = 0 results in

I�0� � me F k ae V
Xn

j�1
C�j �34�

Introducing Equation 34 into Equation 33 and rear-
ranging yields

I�t� ÿ I�0�
I�0�
� A

C�0
Pn

j�1 C�j

�Xn

j�1
C�j ÿ

�Xn

j�1
C�j �

t
s
�n� b�

� �
�
Xn

j�2
C�j �

1

2

t
s
�n� b�

� �2Xn

j�3
C�j �

1

3!

t
s
�n� b�

� �3
�
Xn

j�4
C�j � � � � �

1

�nÿ 1�!
t
s
�n� b�

� �nÿ1
C�n

��
� exp ÿ t

s
�n� b�

� �
�35�

LikewiseXn

j�1
C�j � C�1 1� n

n� b
� n

n� b

� �2

� n
n� b

� �3
"

� � � � � n
n� b

� �nÿ1#
�36�

Equation 36 can be rearranged toXn

j�1
C�j � C�1

Kn ÿ 1

K ÿ 1
�37�

Then Pn
j�2 C�jPn
j�1 C�j

� Kn ÿ K
Kn ÿ 1

�38�

Analogously Pn
j�3 C�jPn
j�1 C�j

� Kn ÿ K2

Kn ÿ 1
�39�Pn

j�4 C�jPn
j�1 C�j

� Kn ÿ K3

Kn ÿ 1
�40�

C�nPn
j�1 C�j

� Kn ÿ Knÿ1

Kn ÿ 1
�41�

Introducing Equations 38±41 into Equation 35 yields

I�t� ÿ I�0�
I�0�

� A
C�0

�
1ÿ

�
1� t

s
�n� b�

� �Kn ÿ K
Kn ÿ 1

� 1

2

t
s
�n� b�

� �2Kn ÿ K2

Kn ÿ 1

� 1

3!

t
s
�n� b�

� �3Kn ÿ K3

Kn ÿ 1
� � � � � 1

�nÿ 1�!
� t

s
�n� b�

� �nÿ1Kn ÿ Knÿ1

Kn ÿ 1

��
� exp ÿ t

s
�n� b�

� �
�42�

or in general
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I�t� ÿ I�0�
I�0� � A

C�0

�
1ÿ

Xn

j�1

1

�jÿ 1�!
t
s
�n� b�

h ijÿ1
"

� Kn ÿ Kjÿ1

Kn ÿ 1

��
exp ÿ t

s
�n� b�

� �
�43�

For high t values Equation 43 approaches

I�1� ÿ I�0�
I�0� � A

C�0
�44�

3. Dynamics of the plug ¯ow model

The dynamics of a plug ¯ow reactor corresponds to a
distributed parameter system. The mass balance gives

e
@C�x; t�
@t

� ÿv
@C�x; t�
@x

ÿ i�x; t� ae
me F

�45�

Assuming that the electrolytic process is carried out
galvanostatically and the current density distribution
is not a�ected by a step perturbation in the inlet
concentration, the solution of Equation 45 is

Y �x; t� � AH t ÿ xe
v

� �
�46a�

with

H t ÿ xe
v

� �
� 0 t <

xe
v

�46b�

H t ÿ xe
v

� �
� 1 t � xe

v
�46c�

Equation 46 was deduced and discussed by Fahidy [1]
and Scott [4].

Likewise, introducing the following kinetic ex-
pression into Equation 45

i�x; t� � me F k C�x; t� �47�
and rearranging in terms of perturbation variables
results in

e
@Y �x; t�
@t

� ÿv
@Y �x; t�
@t

ÿ k ae Y �x; t� �48a�

with the following initial and boundary conditions:

Y �x; 0� � 0 �48b�
and

Y �0; t� � A for t > 0 �48c�
In order to simplify the solution of Equation 48a, it is
necessary to assume that k is independent of position
along the reactor. This assumption is valid under
potentiostatic control when the potential distribution
along the electrode length does not alter the reaction
rate, which is ful®lled by reactions under mass-
transport control.

Using Laplace transforms the solution of Equa-
tion 48a is

Y �x; t� � AH t ÿ xe
v

� �
exp ÿk ae

x
v

� �
�49�

Evaluating Equation 49 at x � L for t � s gives
Equation 26, which corroborates the well known
behaviour that a cascade of reactors approaches the
plug ¯ow model when n!1 [8]. Fahidy [3] has

deduced an equation of the same form as that of
Equation 49 for the galvanostatic case assuming that
the ratio between the current density and the elec-
trolyte density along the reactor is a function of the
concentration, which was approximated by a Taylor
expansion truncated to the two ®rst terms.

The total current, for the reactor, is given by

I�t� � W
Z L

0

i�x; t� dx �50�

Combining Equations 47, 49 and 50 gives

I�t� ÿ I�0� � W me F k A
Z L

0

H t ÿ xe
v

� �
� exp ÿk ae

x
v

� �
dx �51�

Equation 51 can be rearranged to

I�t� ÿ I�0� � W me F k A
Z tv=e

0

exp ÿk ae
x
v

� �
dx

�52�
Equation 52 is valid for

0 � t � Le
v

�53�

Solving Equation 52 and rearranging yields

I�t� ÿ I�0�
I�0� � A

C�0

1ÿ exp ÿ b t
s

� �
1ÿ exp�ÿb� �54�

And for t � s Equation 54 is reduced to

I�s� ÿ I�0�
I�0� � A

C�0
�55�

4. Comparison of the dynamic behaviours and
discussion

Figure 1 shows the response of electrochemical re-
actors according to the tank series model under gal-

Fig. 1. Transient response in outlet concentration. Galvanostatic
control.
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vanostatic control, Equations 15±17, for a step
change of magnitude A in the inlet concentration.
Thus, the di�erence between the outlet concentration
at time t and the outlet concentration before the
perturbation related to the magnitude of the step
change in the inlet concentration as a function of the
normalized time, t=s, is plotted. The behaviour of the
plug-¯ow model under the same conditions, Equation
46a evaluated at x � L, is also given. As expected,
when the number of reactors increases the perfor-
mance of the tank series model approaches the plug
¯ow model. Likewise, for high t values the electro-
chemical system approaches unity independent of the
number of reactors in the stack.

Figures 2 and 3 show typical responses of the tank
series model, Equations 15, 18±20, and the plug-¯ow
model, Equation 49 evaluated at x � L, under po-

tentiostatic control. In this case the response depends
on b, which was assumed unity in Fig. 2 and ten in
Fig. 3. Again at high t values the tank series model
approaches a constant, but the constant value de-
creases when the number of reactors in the stack in-
creases and approaches a limiting value in accordance
with the plug-¯ow model. This behaviour can be ex-
plained taking into account that under potentiostatic
control the reaction rate depends on the concentra-
tion.

Figure 4 shows the response in current of the
studied systems, under potentiostatic control, for a
step change in the inlet concentration. At t!1 the
variation in the current related to the initial current
approaches a constant value. The constant value is
the same for the tank series model, Equation 44, and

Fig. 3. Transient response in outlet concentration. Potentiostatic
control (b � 10).

Fig. 2. Transient response in outlet concentration. Potentiostatic
control (b � 1).

Fig. 4. Transient response in current. Potentiostatic control
(b � 1).

Fig. 5. Time to reach the 99% of the steady-state outlet concen-
tration normalized by the time constant as a function of the
number of reactors in the cascade.
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for the plug-¯ow model, Equation 55. This behaviour
is a consequence of Equation 23, which states that the
response in the outlet concentration, related to the
outlet concentration before the perturbation, C�n , is
constant independent of the reactors number in the
cascade.

Figures 1±3 show that a cascade of electrochemical
reactors achieves the steady state at t!1. From a
practical point of view it is interesting to know the
necessary time to achieve conditions close to the
steady state. Thus, a time ts, termed the stabilization
time, where the response of the system is the 99% of
the steady-state value may be de®ned. Figure 5 shows
the time ts normalized by T as a function of the

number of reactors. ts=T increases with n and at high
n values the relation is approximately linear, which
allows determination of ts. However, T is a function
of n; b and s (according to Equation 19). The results
of Fig. 5 are re-plotted in three-dimensional form in
Fig. 6, where the e�ect of changes in n and b on ts=s is
elucidated. The galvanostatic case is taken into ac-
count in Fig. 6 for b = 0. For a given value of n the
stabilization time normalized with respect to s always
decreases as b increases. However, for a given b value
ts=s decreases with n for low b values and increases
with n for high b values. Likewise, for high values of n
or b the stabilization time approaches the reactor
residence time.
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